Introduction to Marine Electrical

By Matt Bryant 0468925835 matt@mgbryant.com

What not to do...

Fusing

The fuse protects the cable, not the device at the end. The Fuse must be at the start of the circuit and another if you drop cable size.

Voltage: (**E or V**) Is the potential difference between 2 points in a circuit – e.g. across a battery. Voltage is the conduit to carry current.

Power: (P) Watts Is **E x I** Volts x Amps that is the resultant power of that river.

Current: (I) Amps Is the force that is carried by the voltage – eg. A strong running river has high current. A static river would have very little current.

Resistance: (**R**) Ohms Is any resistance offered to the river. **R** = **E** / **I** Also think of it as load.

Amps = Watts / Volts

Calculate Amps of a 1200W Windlass e.g A = 1200 / 12 = 100 Amps

Check a water heater element that is 600 W The element is designed for 230V

Therefore we can calculate what the resistance should be Amps = Watts / Volts 2.6 = 600 / 230

Ohms = Volts / Amps 88 = 230 / 2.6

Voltage drop

Voltage drop is the enemy and is all to do with cable size

Cable calculator

Although this process uses information from ABYC E-11 to recommend wire size and circuit protection, it may not cover all of the unique characteristics that may exist on a boat. If you have specific questions about your installation please consult an ABYC certified installer.

© Copyright 2017 Blue Sea Systems Inc. All rights reserved. Unauthorized copying or reproduction is a violation of applicable laws.

Inrush current – Is the amount of starting Current. For a fridge for example it is 3 times the running current, therefore a 4 amp fridge will have an inrush current of 12 amps. A lamp does not have any inrush current.

Joints

Connecting cables on a boat – A soldering iron is banned excepting for very small cables, because solder contains acid and will cause corrosion. Further, it creates a solid joint which with vibration will break.

- Crimping is the preferred solution.
- Ideally a crimp without an insulator and then covered with heatshrink
- The connection should seal against moisture ingress, consider liquid tape or self amalga

[The Boat Doctor]

QUICK STUDY

How to Make Marine Electrical Connections

The tools needed to make crimp connections are inexpensive, and the techniques used are simple. Still, every connection is a potential source of resistance or corrosion. Use these tips to help ensure better electrical connections for your next refit of repair. - Kevin Falvey

Crimpers

Typical hardware-store crimpers cut and tear into heat-shrink sheathing on crimps and also deflect when you squeeze them - usally deep in the bilge at the far end of your one-arm reach. Made of stamped steel, they make a narrower crimp - band than better crimpers - and builtin wire cutters stink! Pros pay \$100 or more for quality racheting-style crimpers. For DIY work, a midgrade pair (\$30) like these by Ancor is the minimum quality we recommend.

Strip just enough insulation so the wire just fits the length of the terminal's barrel; removing excess insulation compromises the crimp mechanically and corrosionwise. Make sure you have not cut into wires with strippers, then cut the wire squarely and neatly at the end using diagonal cutters ("dykes") or the cutter on your strippers. Twist in clockwise a few turns to add rigidity. Insert the wire into the connector so the insulation butts against the metal crimp barrel.

Crimping

Strive to make a double crimp. Do not crimp at the ends of the connector. Make

sure you are crimping the interior metal barrel; the plastic insulated covering overhangs this at the wire end of the connector. Make the first crimp one wire diameter in distance from the wire end of the barrel. Make the second crimp the same distance from the terminal end of the crimp. Testpull every crimp by hand to make sure you "nailed it."

2 Shrink Connectors

Crimps with heat-shrink collars are a great way to stave off corrosion. After crimping, heat the connector's insulated barrel with a small torch or heat gun. Use indirect heat - don't roast it! You can use a lighter, but the torch affords better control - and can be used for the line splicing as a

bonus. If using a heat gun, be careful where you place it because the nozzle stays hot for several minutes after you turn it off and will quickly melt upholstery or scorch fiberglass.

Shrink Tube

2

4

Shrink tube can be used when heat-shrink connectors are not available. It can also be used to add stiffness to wires connected to panels, switches and terminal blocks. Slide on the shrink tube before you crimp on the connector, and then heat as described with a torch or heat aun.

3 Liquid Electrical Tape

This product seals out moisture as well heat-shrink, in my experience. It can be

West Mari Liquid

Electrical Tape Seals and protects electrical connects

> DANGER PLANMARLE LIQUE AND INF HAMMED OFFICIAL P DIVALIGNMENT Net 4 U.S. fl. oz. (118 ml)

messy to use, but it doesn't

Terminals

Butt splices join wire of the same diameter. To connect wire of different diameter, strip twice as much insulation from the thinner wire and double it back on itself to make the correct diameter. Connections to boards, panels and some switches are best made with ring terminals. Fork terminals can more easily slip off and fail over time

4 Terminal Blocks

Sometimes, a terminal block makes more sense than a bunch of butt splices, especially if different wire sizes need to be connected together. They are especially handy for marine electronics and audio installations. Blue Sea Systems is one supplier that offers a range of sizes and lengths, and a number of connections to suit.

The Clear Choice

Better terminals use tinned copper, not aluminum. Scratch the surface of one to see; aluminum is silver all the way through. Also, only select terminals having nylon sleeves; vinyl sleeves crack all too easily. Nylon is easy to ID; you can see through it.

Protection of physical damage

- Alternator
 - Designed to charge the start battery only.
 - Use an Isolator to charge the House Battery
 - Produces AC voltage and is rectified via diodes to DC
 - Do not shutdown the engine with the ignition on
 - Most small engines produce approx. 60A at full load
 - The drive belt can often be a limitation which can slip
 - New engines use a serpentine belt (geared) and can produce 120A
 - Overheating can be an issue.
- Shore Power
 - Should be at least 10% of the battery to be charged.

Power Generation

MODEL: SPR-E-Flex-50)		
Rated Power (Pmax) ¹ (+/-	-3%) 50	W	
Voltage (Vmp)	17	.6 V	CC
Current (Imp)	2.8	30 A	CC
Open-Circuit Voltage (Vo	c) 21	.5 V	
Short-Circuit Current (Isc) 2.9	95 A	\frown
Maximum Series Fuse	15	A	(\mathbf{J})
Standard Test Conditions: 1000 W/m ² , Al Suitable for ungrounded, positive, or ne Field Wiring: Cu wiring only, min. 12 AWG	M 1.5, 25° C gative grounded D /4 mm², insulated fo	C systems or 90° C min.	RoHS
WARNIN WARNIN Solar module has full voltage ever Installation should only be done b	NG AL HAZARD	4	X
521846 W	ww.sunpower.com	nician.	
Patented as show	in at www.sunpowe	r.com/patents	

Rules for Best Power Production

Keep the panels as perpendicular to the incoming sun's rays as possible., all panels will produce more power if they get direct sunlight.

Avoid shadows: The output of a panel (particularly a crystalline panel) drops dramatically when shadowed, even if only 10 percent of the panel is in shadow. A small shadow can reduce the panel's output by 50 percent or more. When something as large as a boom, radar scanner, or mast casts its shadow on a panel, your output goes down dramatically.

Keep your panels cool. It's not easy to keep a black surface cool in the sun, but panel output goes down as temperature rises, so if you can provide some ventilation on the backside of the panel, you may be able to pick up a five or ten percent increase.

Generally count on 6 hours average @70% efficiency of the panel. Therefore; 100w panel @20v = 5A * 6 hours = 30A @ 70% = 21AIn a 24 hour period if the day was sunny.

Victron Solar Panel 175W-12V Mono 1485x668x30mm series 4a

monocrystalline - Solar Panel 175W-12V Mono 1485x668x30mm series 4a

Specifications of the above Panel:

Nominal Power (Pmpp): 175W
Max Power Voltage (Vmpp): 19.4V
Max Power Current (Impp): 9.03A
Open Circuit Voltage (Voc): 23.7V
Short Circuit Current (Isc): 9.89A
Cell Type: Monocrystalline
Number of cells in series: 36
Max. system voltage: 1000V
Temperature Range: -40°C to +85°C

Types of Solar controllers.

- Use a controller when the current will be > 1.5% of the battery, check that the panel has a diode built in though.
- With multiple panels wire them in series and use a MPPT (maximum power point tracking)
- MPPT converts unused volts to power
- PWM (pulse width modulation) converts unused volt to heat (Lower cost and best for smaller installs)

If low power draw connect the load to the regulator to protect the battery.

SmartSolar Charge Controller	MPPT 75/10	MPPT 75/15	MPPT 100/15	MPPT 100/20	MPPT100/20-48V		
Battery voltage	12/24V Auto Select				48V		
Rated charge current	10A	15A	15A	20A	20A		
Nominal PV power, 12V 1a,b)	145W	220W	220W	290W	n.a.		
Nominal PV power, 24V 1a,b)	290W	440W	440W	580W	n.a.		
Nominal PV power, 48V 1a,b)	n. a.	n. a.	n.a.	n.a.	1160W		
Max. PV short circuit current 2)	13A	15A	15A	20A	20A		
Automatic load disconnect	Yes						
Max. PV open circuit voltage	75V			100V			
Peak efficiency	98%						
Self-consumption		15mA					
Charge voltage 'absorption'		57,6V (adj.)					
Charge voltage 'float'		55,2V (adj.)					
Charge algorithm	multi-stage adaptive						
Temperature compensation	-16 mV / °C resp32 mV / °C						
Max. continuous load current	15A 20A				1A		
Low voltage load disconnect	11,1V / 22,2V/44,4V or 11,8V / 23,6V/47,2V or Battery Life algorithm						
Low voltage load reconnect	13,1V / 26,2V/52,4V or 14V / 28V/56V or Battery Life algorithm						
Protection	Battery reverse polarity (fuse) / Output short circuit / Over temperature						
Operating temperature	-30 to +60°C (full rated output up to 40°C)						
Humidity	95%, non-condensing						
Data communication port	VE.Direct (see the data communication white paper on our website)						

Dual battery setup using an Isolator - Voltage Sensitive Relay (VSR) or Schotchy diodes

- Starting batteries rated in CCA (30 seconds)
- House Batteries rated in Amps
 - Lead Acid (Flooded)
 - AGM Deep Cycle
 - Lithium High performance LifeP04

CCA = Cold Cranking Amps – even a small 680 can start a 70hp diesel – It is rated at 0 degrees for 30 seconds.

Reserve Capacity **(RC)** This is the number of minutes a fully charged battery will discharge 25 amps until the battery drops below 10.5 volts.

An amp hour **(AH)** is a rating usually found on deep cycle batteries. If a battery is rated at 100 amp hours it should deliver 5 amps for 20 hours, 20 amps for 5 hours, etc.

Notes regarding batteries

DoD (depth of discharge) 50% for a flooded battery and 75% for a good quality AGM, 90% for Lifep04

Go over the DoD and the battery life will deteriorate quickly.

Cat 4 and Under, all batteries must be a sealed type.

Ideally charge at 10% of the rated power

Don't mix battery types if possible

Generally replace all your batteries in 1 go

Batteries in Parallel and Series

Fault Finding

Motor wont start –

- Check the voltage of the battery, should be at least 12.5v
- Clean the terminals file
- Check the common Negative on the engine block often rusty
- Is the solenoid clicking?
- Try a jumper lead direct to the starter motor (bypass solenoid)

Batteries not charging

- Look for an increase in Volts when motor running or strong solar
- Consider borrowing a clamp meter
- Check belt to the Alternator
- Check Connections
- Have the Battery tested

Matt Bryant

<u>matt@mgbryant.com</u>

www.mgbryant.com

• Ph 0468 925 835